Journal of Mathematical Sciences: Advances and Applications
Volume 29, 2014, Pages 17-35

WEYL’S THEOREM FOR ALGEBRAICALLY TOTALLY
p - (0, B)-NORMAL OPERATORS

D. SENTHILKUMAR and R. SANTHI

Post Graduate and Research Department of Mathematics
Government Arts College (Autonomous)

Coimbatore-641 018

Tamil Nadu

India

e-mail: senthilsenkumhari@gmail.com

Department of Mathematics

Sri Ramakrishna Engineering College
Vattamalaipalayam

Coimbatore-641 022

Tamil Nadu

India

e-mail: santhinithyasena@yahoo.co.in
Abstract

An operator T € B(H) is said to be p —(a, B) normal operators for 0 < p <1

if (xz(T*T)p < (TT*)P < BZ(T*T)p, 0 <a <1<pB. In this paper, we prove
Weyl’s theorem for totally p — (o, B)-normal operators and algebraically totally

p - (o, B)-normal operators.
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1. Introduction and Preliminaries

Let B(H) denotes the algebra of all bounded linear operators acting

on an infinite dimensional separable Hilbert space H. For positive
operators A and B, write A > B if A- B > 0. If A and B are invertible
and positive operators, it 1s well known that A > B implies that

log A > log B. However [3], log A > log B does not necessarily imply
A > B. A result due to Ando [4] states that for invertible positive

operators A and B, log A > log B, if and only if A" > (A%B'“Aé )% for all
r 2 0. For an operator T, let U|T| denote the polar decomposition of 7,
where U is a partially isometric operator, |T| is a positive square root of
T*T and ker(T) = ker(U) = ker(|T|), where ker (S) denotes the kernel
of operator S.

An operator T € B(H) is positive, T >0, if (Tx, x) >0 for all
x € ‘H, and posinormal if there exists a positive A € B(H) such that
TT* = T*AT. Here A is called interrupter of 7. In the other words, an
operator T is called posinormal if 77" < czT*T, where T" is the adjoint
of T and ¢ >0 [11]. An operator T is said to be heminormal if T is
hyponormal and 7T commutes with 77". An operator 7 is said to be
p-posinormal if (TT*)P < 2(T*T)* for some ¢ > 0. It is clear that
1-posinormal is posinormal. An operator 7 is said to be p-hyponormal, for
p € (0,1), if (T*T)? > (TT")?. A 1-hyponormal operator is hyponormal
which has been studied by many authors and it is known that
hyponormal operators have many interesting properties similar to those
of normal operators [34]. Fututa et al. [17], have characterized class A

operator as follows. An operator T belongs to class A if and only if

(T*|TT)z > T*T.
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An operator 7T is called normal if T*T=TT" and

k
(p, k)-quasihyponormal if T* ((T*T)? —(TT*)*YI'* >0(0<p<1,keN).
Aluthge [2], Gupta [9], Arora and Arora [5] introduced p-hyponormal,

p-quasihyponormal and k-quasihyponormal operators, respectively.
p-hyponormal c p-posinormal c (p, k)-quasiposinormal,
p-hyponormal ¢ p-quasihyponormal
c (p, k)-quasihyponormal c (p, k)-quasiposinormal,

and

hyponormal ¢ k-quasihyponormal c (p, k)-quasihyponormal
c (p, k)-quasiposinormal,
for a positive integer k& and a positive number 0 < p < 1.

An operator T € B(H) is said to be (a, B)normal operators, if

o2T*T < TT* < [32T*T, 0<a<1<p [25]. The example of an

M-hyponormal operator given by Wadhwa [32], the weighted shift

operator defined by Te; = eg, Teq = 2e3, and Te; = e;,1 for i > 0, is not
a p - (a, B)-normal, which is neither normal nor hyponormal. So it is
clear that the class of p — (o, B)-normal lies between hyponormal and

M-hyponormal operators. Now, the inclusion relation becomes

normal ¢ hyponormal ¢ (a, B)-normal
c p - (a, B)-normal ¢ M-hyponormal c dominant.

Let B(H) and K(H) denote, respectively, the algebra of bounded

linear operators and the ideal of compact operators acting on an infinite

dimensional separable Hilbert space H. If T € B(H), we shall write
N(A) and R(T) for the null space and the range of T, respectively. Also,
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let o(T):=dimN(T), B(T) := dim N(T*), and let oT), 5,(T), and
[1o(T) denote the spectrum, approximate point spectrum, and the point
spectrum of T, respectively. An operator T' € B(H) is called Fredholm if
it has a closed range, a finite dimensional null space, and its range has

finite co-dimension. The index of a Fredholm operator is given by

I(A) = o(T) - B(T).

For T e B(H), let o(T) = dim(ker(T)), B(T) = dim(ker(7™*)), and
o(T), ©4(T), ng(T) denote the spectrum, approximate point spectrum
and the point spectrum of T, respectively. An operator T € B(H) is called

Fredholm if it has closed range, finite dimensional null space and its
range has finite co-dimension. The index of a Fredholm operator is given
by ind(T) = a(T) - B(T).

A bounded linear operator 7 is called Weyl if it is Fredholm of index
zero and Browder if it is Fredholm of finite ascent and descent;
equivalently, if T is Fredholm and 7T - A is invertible for sufficiently

small |[L|2 0,1 e C [19]. For T € B(H), for each non-negative integer
n, define T, to be the restriction of 7' to ran(7") into ran(7"). If for

some n, the space ran(7") is closed and 7}, is a Fredholm operator, then
T is called a B-Fredholm operator [6]. T € B(H) is called a B-Weyl

operator if it is a B-Fredholm operator of index zero.
Let ®,(H) ={T € B(H): o(T') < o and T(H) is closed }.
Let ®_(H) ={T € B(H) : B(T) < o},

denote the class of all upper semi-Fredholm operators and lower

semi-Fredholm operators. And let ®,(H) is the class of all left-semi-

Fredholm operators, such that for every T € ®(H), ind T < 0.
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Let SBF, be the class of all upper semi-B-Fredholm operators,
SBF_ be the class of all semi-B-Fredholm operators such that for every

T e SBF_, ind(T) < 0. The essential spectrum c,(T), the Weyl spectrum
o, (T) and the Browder spectrum o(T) of T are defined by [18], [19]:

6.(T)={L € C: T -1 is not Fredholm};
c,(T)={r e C:T -1 is not Weyl};
op(T) ={L € C: T - is not Browder};

respectively. And the B-Weyl spectrum, a-Browder spectrum, essential
approximate spectrum, and Weyl (essential) approximate point spectrum

are defined by
ogw(T)={r e C: T - % is not B-Weyl};
Goq(T)={LeC:T-x¢d.(H)};
ouw(T) = ﬂca(T + K): TK = KT, K is a compact operator;
6pa(T)={h e C:T -2 ¢ &,(H) and ind(T - 2) < o).
Evidently, 6,(T) < 6,,(T) < 64(T) = 6,(T)U acc o(T);
where we write acc o(T') for the accumulation points of o(T").
If we write isoK = K \ accK, then we write
moo(T) = {L e isoo(T): 0 < aT - L) < o},
poo(T) = o(T)\ op(T),
n50(T) = {r €is06,(T): 0 < (T — L) < }.
We say that Weyl’s theorem holds for T' € B(H), if

S(T)\ 0, (T) = moo(T).
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We say that Generalized Weyl’s theorem holds for T € B(H), if

o(T)\ opw(T) = E“(T).
We say that a-Weyl’s theorem holds for T' € B(H), if
Sap(T)\ 64 (T) = 7o (T)
We say that Browder’s theorem holds for T € B(H), if
S(T)\ 6 (T) = poo(T).

We say that a-Browder’s theorem holds for T € B(H), if

Gea (T) = Ogb (T)

We say that generalized a-Weyl’s theorem holds for T' € B(H), if

GSBF_,__ (T) = Gap(T) \ Ea(T),

where E® is the set of all eigenvalues of 7' that are isolated in o, (T).

It is clear that [8]
generalized a-Weyl’s theorem = generalized Weyl’s theorem
= Weyl’s theorem = Browder’s theorem;
and
generalized a-Weyl’s theorem = a-Weyl’s theorem
= Weyl’s theorem = Browder’s theorem;
and
generalized a-Weyl’s theorem = a-Weyl’s theorem
= generalized Browder’s theorem = Browder’s theorem.

Mecheri [24] has proved generalized a-Weyl’'s theorem for some
classes of operators. Here in this paper, we prove generalized a-Weyl’s

theorem for totally p — (a, B)-normal operators.
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We say that T € B(H) has the single valued extension property (SVEP)
if, for every open set U < C, the only analytic function f : U — H that
satisfies the equation (T - 1)f(A) = 0 is the constant function f = 0.

An operator T is said to be class ), for a >1, if there exists a

positive number k, such that
|TT* = T*T|* < k2(T - 1) (T - 1) for all 1 € C.

It is known that ), c Vg if 1<oa<p Let Y= Umya. We remark

that a class ),, operator T is M-hyponormal, i.e., there exists a positive

number M such that
(T = W)(T =) < M*(T =) (T 1) for all & e C,
and M-hyponormal operators are class ). [31].

An operator 7T is said to have a finite ascent if ker 7™ = ker 77!

for some positive integer m, and finite descent if ran7” = ranT"™*! for
some positive integer n.
Let X be a Banach space. An operator 7' € B(X) is called B-Fredholm

by Berkani [6], if there exists n € N for which the induced operator
T, : T"(X) » T"(X),

is Fredholm in the usual sense, and B-Weyl if in addition 7}, has index

Zero.

Weyl [33] has proved Weyl’s theorem for Hermitian operators. From
then on, it has been extended to various classes of operators such as
hyponormal, Toeplitz [10], and to several classes operators including
hyponormal operators [26, 30]. Curto and Han [12] have proved the
theorem for algebraically paranormal operators. Generalization of Weyl’s

theorem named as generalized Weyl’s theorem is proved for hyponormal
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operators by Berkani [7]. Recently, it has been extended to various
classes of operators such as algebraically hyponormal [18], algebraically
class A [27], etc..

Here in this paper, we extend the same for more general class of

operators, namely, totally p — (o, B)-normal operators. Also, we prove

Weyl’s theorem for algebraically totally p — (o, B)-normal operators.

Dragomir and Moslehian [13] has given various inequalities between

the operator norm and numerical radius of (o, B)-normal operators. In

this article, we extend the results to p — (a, B)-normal operators.

2. Generalized Weyl Theorem for Totally
p - (a, B)-Normal Operators

We prove the following lemmas to prove the generalized a-Weyl's

theorem for totally p — (o, B)-normal operators.

Lemma 2.1. Let T € B(H) be totally p - (a, B)-normal, then T -\
has finite ascent for all then T has SVEP.

Proof. If T'is totally p — (a, B)-normal, then ker(T —1)P =ker(T - 1),

ascent (T — L) < p <1 forall A e C, then Thas SVEP. O

Theorem 2.2. Let T € B(H) be totally (a, B)-normal and X\ € o(T)
be an isolated point of o(T), then Hy(T) = E; H, where E; denote the

Riesz idempotent for M.
Proof. Since T has SVEP, by [28] the theorem follows. a
Theorem 2.3. Let T € B(H) be totally p-—(a,B)normal. Let

M < H be an invariant subspace of T, then the restriction T)| u 18 also

totally p — (o, B)-normal.



WEYL’'S THEOREM FOR ALGEBRAICALLY TOTALLY ... 25

Proof. Let P be the orthogonal projection on M. Then for all z € C
and for all x € M,

I(T = =2D)] \f) x| = |P(T = Z)"|| = (T = 2I)"x| = M, (4] = 2Ix)].-
O

Lemma 24. Let T € B(H) be totally p — (., B)-normal. If o(T — 1) = {0},
then T = \.

Proof. If T is totally p — (o, B)-normal, then T € Y. < Y by using

the same argument used in [31, Lemma 10], and it is known that if
T €Y andif o(T) = {0}, then A = 0 [31, Lemma 14]. Therefore, if T is

totally p — (o, B)-normal, then T — Al is also totally p — (a, B)-normal
and o(T — AI) = {0}. Hence T — AI = 0. O

Theorem 2.5. Let T be a totally p — (a, B)-normal operator and g
be an isolated point of o(T). If E is the Riesz idempotent for Ay, then E is
self adjoint and E(H) = ker(T — Lq) = ker(T* - &).

Proof. The second equality follows from the definition of totally
(o, B)normal operators. Any p - (a, B)-normal operator T can be

0 0

J, where C :ran(T) — ran(T)
0 C

represented as a block matrix [

has zero kernel.

_ L _ oyt
E_Qm_j(x Ty lax
oD

on E(H)® E(H)*.
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Hence E is self adjoint. a

It is known that if 7' € B(H) has SVEP, then f(7T') has SVEP for

each f analytic in an open neighbourhood of o(T').

Lemma 2.6. Let T € B(H) be totally p - (a,B)-normal. Then
generalized Weyl’'s theorem hold for T.

Proof. Assume that A € o(T') \ 6w (7). Then T — AI is B-Weyl and
not invertible. We claim that A € do(T"). Assume to the contrary that A
is an interior point of o(7'). Then, there exists a neighbourhood U of A
such that dim(7 — p) > 0 for all p € U. It follows from [16, Theorem 10]

that 7 does not have SVEP. On the other hand, since T is totally
p — (o, B)-normal, it follows from Lemma 2.1 above that T has SVEP,

which is a contradiction. Therefore A € do(T). Conversely, assume that
LA € E(T), then A is isolated in o(7"). From [20, Theorem 7.1], we have
X=M®N, where M and N are closed subspaces of
X,U = (T -A)|,, is an invertible operator and V = (T - AI)[,, is a
quasinilpotent operator. Since 7T is totally p — (a, B)normal, V is also
totally p — (o, B)-normal, and from Lemma 2.4 is nilpotent. Therefore
T — A1 is Drazin invertible [29, Proposition 6] and [21, Corollary 2.2]. By
[6, Lemma 4.1], T — Al is a B-Fredholm operator of index 0. a

Theorem 2.7. Let T € B(H) be totally p — (o, B)-normal. Then f(T)

obeys generalized Weyl's theorem for every function [ analytic in the
neighbourhood of o(T).

Proof. Since the operator T satisfies the generalized Weyl’s theorem
and it is isoloid, it follows from [7, Lemma 2.9] that f(7') obeys the

generalized Weyl’s theorem. O

Theorem 2.8. Let T € B(H) be totally p - (a, B)-normal. Then
f(T)) satisfies Browder’s theorem for each function [ analytic in a

neighbourhood of o(T).
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Proof. It is known that operators with SVEP satisfy Browder’s
theorem [14]. Then f(T') satisfies Browder’s theorem. O

Theorem 2.9. Let T be totally p—(a, B)-normal. Then the

generalized a-Weyl's theorem holds for T.

Proof. We have to prove that c,,(T)\ 6, (T) = E*(T). For this,

SBF;
assume that X e oq,(T)\ S SRR~ (T). Then T -Xl 1is an upper
semi-B-Fredholm operator and ind(7 -AI)< 0. Hence, for n large

enough, 7 - (A + % )JI is an upper semi-Fredholm operator and
ind(T = (. + % ) I)=indT I [8]. Therefore ind(T — (1 + % )) < 0.
Since T has SVEP, [1] implies that ind(7 - (A + % )J)>0. Thus

ind(7 - (A + % )I) = 0. It follows that ind (T — AI) = 0. This implies that

T — A1 is a B-Fredholm operator of index zero. Since T has SVEP, we
have o(T') = 64,(T) and we have, % € o(T)\ opw(T). Then it follows

from Theorem 2.6 that A € E(T). Hence A € E“(T). Conversely, let
A € E%(T). Then X is an isolated point of o,,(T). Therefore A is an

isolated point of o(7™). Let P be the spectral projection defined by
P- _[ (ol - T* ) Ldy,
8B,
where B, is an open disk centered at A that contains no other points of
o(T"). Then T" can be represented as the direct sum
T* =Ty ® Ty, where o(T}) = A and o(Ty) = o(T")\ {1}.

Then o(T*)-T, is invertible. We have to consider the two following

cases:
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Case 1. Assume that A =0. Then o(7}) = {0}. Since 7} is a totally

p — (o, B)-normal operator, it follows that 73 =0 by Lemma 2.1.
Therefore AI - T = 0@ I — Ts.
Case 2. Assume A #0. Since 77 1is an invertible totally

p — (a, B)-normal operator, it follows that Tfl 1s an invertible totally

p — (o, B)-normal operator. Then |71 = [3| and |77} = % Therefore,

for any x € R(P), we have

1 1 1
lell < |73 || Toxl| = mllTlx” < WW lell = ll]-

Hence, %Tl is unitary. Therefore 7T, is normal and AI -7} is also

normal. Since Al —T; 1is quasinilpotent and the only normal
quasinilpotent operator is zero, it follows that A -7 = 0® Al — Ts.

Now since AI — T, is invertible, it is known that AI — T has finite
ascent and descent. Therefore AI — T has finite ascent and descent. This

implies that A € o,,(T)\ S gpr- (T). O

Theorem 2.10. Let T be a totally p — (a, B)-normal operator. Then T
is a-isoloid.

Proof. Since 7T is a totally p — (o, B)-normal operator, Theorem 2.9

implies that a-Weyl’s theorem holds for 7 and o(T') = 6,,(T). If we
assume that A € is06,,(T) = isoo(T'), then A € isoo(T"). Since T" is a
totally p — (o, B)-normal operator and it is isoloid, N(AI —T") = {0}.
Since N(AM -T*)<c N(AI -T), we have N(M -T) # {0}. Thus T is

a-isoloid. O
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Theorem 2.11. Let T be totally p — (o, B)-normal. Then f(T) obeys

the generalized a-Weyl's theorem for every function f analytic in a
neighbourhood of o(T).

Proof. Since T is a-isoloid, T' € Ty(H) and T obeys the generalized
a-Weyl’'s theorem, [35, Theorem 2.2] implies that f(T') obeys the

generalized a-Weyl’s theorem. |

3. Weyl’s Theorem for Algebraically Totally
p — (a, B)-Normal Operators

Lemma 38.1. Let T be an algebraically totally p - (a, B)-normal
operator. Then T has SVEP.

Proof. If T is algebraically totally p — (o, B)-normal operator, then
p(T) 1is totally p —(a, B)-normal operator for some nonconstant
polynomial p. Since p(T) has SVEP. It follows from [22] that T has
SVEP. O

Lemma 3.2. Let T be a quasinilpotent algebraically totally

p — (a, B)-normal operator. Then T is nilpotent.

Proof. Assume that p(T) is totally p —(a, B)normal for some
nonconstant polynomial p. Since o(p(T)) = p(c(T')), the operator
p(T) — p(0) is quasinilpotent. Thus Lemma 2.4 implies that

cI™(T =) (T =2hg) ... (T =2y,) = p(T)- p(0) =0,
where m > 1. Since T - A; is invertible for every A # 0, we must have

T" = 0. ]

Theorem 38.3. Let T be an algebraically totally p — (o, B)-normal

operator. Then T is an isoloid.
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Proof. Let X e o(T). Using the Riesz idempotent E, we can

T, 0

represent T as a direct sum7T 2[ ], where o(77) = {0} and

0o T
o(Ty) = o(T)\ {A}. Since T is algebraically totally p - (o, B)-normal
operator, p(T) is totally p — (o, B)-normal operator for some nonconstant
polynomial p. So o(p(Ty)) = {p(r)}. Therefore p(T})- p(r) is
quasinilpotent. Since p(77) is totally p — (o, B)-normal operator, from
Lemma 2.4 that p(Ty)-p(k)=0. Put gq(z)= p(z)- p(r). Then
q(T}) = 0, and hence 7T) is algebraically totally p — (a, B)-normal, it
follows from Theorem 3.2 that 7} — & is nilpotent. Therefore A € mny(77),

and hence A € ny(T). So T'is isoloid. O

Theorem 3.4. Weyl's theorem holds for T when T* is an algebraically

totally p — (o, B)-normal operator.

Proof. Suppose that A € o(T)\ 6,,(T). Then T - A is Weyl and not
invertible. We claim that A € do(T'). Let A be an interior point of o(T").
Then, there exists a neighbourhood U of A such that dim ker(7 —pu) > 0
for all u € U. It follows from [15] that 7 does not have SVEP. On the
other hand, since p(T) is totally p — (a, B)-normal for some nonconstant
polynomial p, it follows from Lemma 3.1 that T has SVEP, which is a
contradiction. Therefore A € d5(T)\ c,(T), and it follows from the
punctured neighbourhood theorem that A € ngo(7). Conversely, suppose

that ngo(7T"), using the Riesz idempotent E, we can represent T as the

direct sum T = [ ], where o(7}) = {0} and o(Ty) = o(T) \ {r}.

0o T
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We consider two cases:

(i) When A = 0. Then 7 is algebraically totally p — (a, B)-normal
and quasinilpotent. It follows from Lemma 3.2 that 7} is nilpotent. Since
ker(7}) is infinite dimensional, then 0 ¢ nyo(7T"), which is a contradiction.
So dimran(E) < . So it follows that 7} is Weyl. But since T, is
invertible, we can conclude that T'is Weyl. Therefore 0 € o(T') \ o, (T).

(i) When A # 0. Then by the proof of Lemma 3.2, 77 — A is nilpotent.
Since A € myo(T), T} — A is an operator on the finite dimensional space

ran(T"). So T} — 1 is Weyl. Since Ty — A is invertible, 7' — % is Weyl. O

Theorem 38.5. Let T be an algebraically totally p — (o, B)-normal
operator. Then Weyl's theorem holds for f(T) for any function f analytic
in the neighbourhood of the spectrum o(T) of T.

Proof. First, we show that f(c,(T)) = c,(f(T)) for all functions f
analytic in the neighbourhood of o(T) of 7. It is enough to prove
f(c,(T)) < 6,(f(T)), since the other inequality is always true. Let A ¢
6, (f(T)). Then f(T)-x is Weyl and f(T)-A =c(T =0y )(T —ag)...
(T - a,)g(T), where ¢, aq, ag, ..., a, € C and g(T) is invertible. Since
the operators on the right side commute, every T — a; is Fredholm. Since
T is algebraically totally p — (o, p)-normal, 7 has SVEP by Lemma 3.1. It
follows from [1] that i(7 — a;) < 0 for each i =1, 2, ..., n <. Therefore
L ¢ f(o,(T)), and hence f(c,,(T)) = 6, (f(T)). From [23], we know that
if T is isoloid, then f(o(T)\ ng(T)) = o(f(T)) \ moo(f(T)), since T is
isoloid by Lemma 3.3 and Weyl’s theorem holds for 7T,

S(f(T)\ moo (F(T) = f(o(T) \ mgo(T'))
= f(0/(T)) = 0, (f(T)),

which implies that Weyl’s theorem holds for f(T'). O
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Definition 3.6. For T € B(H), A € o(T) is said to be a regular point
if there exists S € B(H) such that T -1 = (T - A)S(T -1). If every

isolated point of o(7T') is a regular point, then T'is called a reguloid.

Following lemma is used to prove the corollary below.

Lemma 3.7 ([18]). T — A has a closed range, if and only if T — A =
(T = 2)S(T - 2).

Corollary 3.8. If T is a totally (a, B)-normal operator, then T is a
reguloid.

Proof. Let 1y be an isolated point of (7). Using Reisz idempotent E, ,

T 0

we can represent T'as a direct sum 7" = { J, where o(7;) = {0} and

o(Ty) = o(T)\ fo).

Since T3 is also (a, B)-normal operator, it follows from Lemma 2.4 that
T, =%o. Therefore by Theorem 2.5, H = E(H)® E(H)* =ker(T - 1)

® ker(T — Lo)". Hence T =iy ® Ty. Therefore T —hy=0® (T, —%o)

and hence
ran(T - 7\,0) = (T - }“O)(H) =0 (TZ - Ko)(kel‘(T - Ko)l )
Since Ty — A is invertible, T' — Ay has a closed range. O

Theorem 3.9. Let T € B(H) be a totally (a, B)-normal operator.
Then f(T) satisfies Browder’s theorem for each analytic function f in a

neighbourhood of o(T) and we have
f(o(T)\To(T)) = f(cp(T)) = p(f(T) = o(f(T)\ o (f(T)) = f(o(T) \ o
(1)), and f(opy(T)) = o, (F(T)).
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Proof. It is known that operators with SVEP satisfy Browder’s
theorem [14]. Then f(T) satisfies Browder’s theorem. Since f(T')

satisfies Browder’s theorem,

f(o(T)\ Mo(T)) = f(op(T))

= op(f(T))
= o(A(T))\ Mo (A(T))
= f(s(T)\ Mo (F(T))
= f(o(T)NIo(A(T)),
and f(op,(T)) = op,(f(T)).
This completes the proof. O
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