WEYL'S THEOREM FOR ALGEBRAICALLY TOTALLY $p - (\alpha, \beta)$ -NORMAL OPERATORS

D. SENTHILKUMAR and R. SANTHI

Post Graduate and Research Department of Mathematics Government Arts College (Autonomous) Coimbatore-641 018 Tamil Nadu India e-mail: senthilsenkumhari@gmail.com Department of Mathematics Sri Ramakrishna Engineering College Vattamalaipalayam Coimbatore-641 022 Tamil Nadu India e-mail: santhinithyasena@yahoo.co.in

Abstract

An operator $T \in B(\mathcal{H})$ is said to be $p - (\alpha, \beta)$ normal operators for 0 $if <math>\alpha^2 (T^*T)^p \le (TT^*)^p \le \beta^2 (T^*T)^p$, $0 \le \alpha \le 1 \le \beta$. In this paper, we prove Weyl's theorem for totally $p - (\alpha, \beta)$ -normal operators and algebraically totally $p - (\alpha, \beta)$ -normal operators.

Received May 14, 2014

© 2014 Scientific Advances Publishers

²⁰¹⁰ Mathematics Subject Classification: Primary 47B33; Secondary 47B37.

Keywords and phrases: $p - (\alpha, \beta)$ -normal operators, (α, β) -normal operators, Weyl's theorem, SVEP.

1. Introduction and Preliminaries

Let $B(\mathcal{H})$ denotes the algebra of all bounded linear operators acting on an infinite dimensional separable Hilbert space \mathcal{H} . For positive operators A and B, write $A \geq B$ if $A - B \geq 0$. If A and B are invertible and positive operators, it is well known that $A \geq B$ implies that $\log A \geq \log B$. However [3], $\log A \geq \log B$ does not necessarily imply $A \geq B$. A result due to Ando [4] states that for invertible positive operators A and B, $\log A \geq \log B$, if and only if $A^r \geq (A^{\frac{r}{2}}B^rA^{\frac{r}{2}})^{\frac{1}{2}}$ for all $r \geq 0$. For an operator T, let U|T| denote the polar decomposition of T, where U is a partially isometric operator, |T| is a positive square root of T^*T and $\ker(T) = \ker(U) = \ker(|T|)$, where $\ker(S)$ denotes the kernel of operator S.

An operator $T \in B(\mathcal{H})$ is positive, $T \ge 0$, if $(Tx, x) \ge 0$ for all $x \in \mathcal{H}$, and posinormal if there exists a positive $\lambda \in B(\mathcal{H})$ such that $TT^* = T^*\lambda T$. Here λ is called interrupter of T. In the other words, an operator T is called posinormal if $TT^* \le c^2T^*T$, where T^* is the adjoint of T and c > 0 [11]. An operator T is said to be heminormal if T is hyponormal and T^*T commutes with TT^* . An operator T is said to be p-posinormal if $(TT^*)^p \le c^2(T^*T)^p$ for some c > 0. It is clear that 1-posinormal is posinormal. An operator T is said to be p-hyponormal, for $p \in (0, 1)$, if $(T^*T)^p \ge (TT^*)^p$. A 1-hyponormal operator is hyponormal which has been studied by many authors and it is known that hyponormal operators [34]. Fututa et al. [17], have characterized class A operator as follows. An operator T belongs to class A if and only if $(T^*|T|T^*|T^*)^{\frac{1}{2}} \ge T^*T$.

An operator T is called normal if $T^*T = TT^*$ and (p, k)-quasihyponormal if $T^{*^k}((T^*T)^p - (TT^*)^p)T^k \ge 0 (0 .$ Aluthge [2], Gupta [9], Arora and Arora [5] introduced <math>p-hyponormal, p-quasihyponormal and k-quasihyponormal operators, respectively.

p-hyponormal \subset p-posinormal \subset (p, k)-quasiposinormal,

p-hyponormal $\subset p$ -quasihyponormal

 \subset (*p*, *k*)-quasihyponormal \subset (*p*, *k*)-quasiposinormal,

and

hyponormal \subset *k*-quasihyponormal \subset (*p*, *k*)-quasihyponormal

 $\subset (p, k)$ -quasiposinormal,

for a positive integer k and a positive number 0 .

An operator $T \in B(\mathcal{H})$ is said to be (α, β) -normal operators, if $\alpha^2 T^*T \leq TT^* \leq \beta^2 T^*T$, $0 \leq \alpha \leq 1 \leq \beta$ [25]. The example of an *M*-hyponormal operator given by Wadhwa [32], the weighted shift operator defined by $Te_1 = e_2$, $Te_2 = 2e_3$, and $Te_i = e_{i+1}$ for $i \geq 0$, is not a $p - (\alpha, \beta)$ -normal, which is neither normal nor hyponormal. So it is clear that the class of $p - (\alpha, \beta)$ -normal lies between hyponormal and *M*-hyponormal operators. Now, the inclusion relation becomes

 $normal \subseteq hyponormal \subseteq (\alpha, \beta)$ -normal

 $\subseteq p - (\alpha, \beta)$ -normal $\subseteq M$ -hyponormal \subseteq dominant.

Let $B(\mathcal{H})$ and $K(\mathcal{H})$ denote, respectively, the algebra of bounded linear operators and the ideal of compact operators acting on an infinite dimensional separable Hilbert space \mathcal{H} . If $T \in B(\mathcal{H})$, we shall write N(A) and R(T) for the null space and the range of T, respectively. Also, let $\alpha(T) := \dim N(T)$, $\beta(T) := \dim N(T^*)$, and let $\sigma(T)$, $\sigma_a(T)$, and $\prod_0(T)$ denote the spectrum, approximate point spectrum, and the point spectrum of T, respectively. An operator $T \in B(\mathcal{H})$ is called Fredholm if it has a closed range, a finite dimensional null space, and its range has finite co-dimension. The index of a Fredholm operator is given by

$$I(A) := \alpha(T) - \beta(T).$$

For $T \in B(\mathcal{H})$, let $\alpha(T) = \dim(\ker(T))$, $\beta(T) = \dim(\ker(T^*))$, and $\sigma(T)$, $\sigma_a(T)$, $\pi_0(T)$ denote the *spectrum*, *approximate point spectrum* and the *point spectrum* of T, respectively. An operator $T \in B(\mathcal{H})$ is called *Fredholm* if it has closed range, finite dimensional null space and its range has finite co-dimension. The *index* of a Fredholm operator is given by $\operatorname{ind}(T) = \alpha(T) - \beta(T)$.

A bounded linear operator T is called Weyl if it is Fredholm of index zero and *Browder* if it is Fredholm of finite ascent and descent; equivalently, if T is Fredholm and $T - \lambda$ is invertible for sufficiently small $|\lambda| \ge 0, \lambda \in \mathbb{C}$ [19]. For $T \in B(\mathcal{H})$, for each non-negative integer n, define T_n to be the restriction of T to $ran(T^n)$ into $ran(T^n)$. If for some n, the space $ran(T^n)$ is closed and T_n is a Fredholm operator, then T is called a *B*-Fredholm operator [6]. $T \in B(\mathcal{H})$ is called a *B*-Weyl operator if it is a *B*-Fredholm operator of index zero.

> Let $\Phi_+(\mathcal{H}) = \{T \in B(\mathcal{H}) : \alpha(T) < \infty \text{ and } T(\mathcal{H}) \text{ is closed}\}.$ Let $\Phi_-(\mathcal{H}) = \{T \in B(\mathcal{H}) : \beta(T) < \infty\},$

denote the class of all upper semi-Fredholm operators and lower semi-Fredholm operators. And let $\Phi^-_+(\mathcal{H})$ is the class of all left-semi-Fredholm operators, such that for every $T \in \Phi^-_+(\mathcal{H})$, ind $T \leq 0$. Let SBF_+ be the class of all upper semi-B-Fredholm operators, SBF_+^- be the class of all semi-B-Fredholm operators such that for every $T \in SBF_+^-$, $ind(T) \leq 0$. The essential spectrum $\sigma_e(T)$, the Weyl spectrum $\sigma_w(T)$ and the Browder spectrum $\sigma_b(T)$ of T are defined by [18], [19]:

$$\sigma_e(T) = \{\lambda \in \mathbb{C} : T - \lambda \text{ is not Fredholm}\};$$

$$\sigma_w(T) = \{\lambda \in \mathbb{C} : T - \lambda \text{ is not Weyl}\};$$

$$\sigma_b(T) = \{\lambda \in \mathbb{C} : T - \lambda \text{ is not Browder}\};$$

respectively. And the *B-Weyl spectrum*, *a-Browder spectrum*, *essential approximate spectrum*, and *Weyl (essential) approximate point spectrum* are defined by

$$\sigma_{Bw}(T) = \{\lambda \in \mathbb{C} : T - \lambda \text{ is not } B\text{-Weyl}\};\$$

$$\sigma_{ea}(T) = \{\lambda \in \mathbb{C} : T - \lambda \notin \Phi_+^-(\mathcal{H})\};\$$

 $\sigma_{ab}(T) = \bigcap \sigma_a(T + K) : TK = KT, K$ is a compact operator;

$$\sigma_{wa}(T) = \{\lambda \in \mathbb{C} : T - \lambda \notin \Phi_+(\mathcal{H}) \text{ and } \operatorname{ind}(T - \lambda) \le \infty\}.$$

Evidently, $\sigma_e(T) \subseteq \sigma_w(T) \subseteq \sigma_b(T) = \sigma_e(T) \cup acc \sigma(T);$

where we write $acc \sigma(T)$ for the accumulation points of $\sigma(T)$.

If we write $isoK = K \setminus accK$, then we write

$$\begin{aligned} \pi_{00}(T) &= \{ \lambda \in iso \ \sigma(T) : 0 < \alpha(T - \lambda) < \infty \}, \\ p_{00}(T) &= \sigma(T) \setminus \sigma_b(T), \end{aligned}$$

$$\pi_{00}^{a}(T) = \{\lambda \in iso \, \sigma_{a}(T) : 0 < \alpha(T - \lambda) < \infty\}$$

We say that Weyl's theorem holds for $T \in B(H)$, if

$$\sigma(T) \setminus \sigma_w(T) = \pi_{00}(T).$$

We say that Generalized Weyl's theorem holds for $T \in B(H)$, if

$$\sigma(T) \setminus \sigma_{BW}(T) = E^a(T).$$

We say that *a*-Weyl's theorem holds for $T \in B(H)$, if

$$\sigma_{ap}(T) \setminus \sigma_{wa}(T) = \pi_{00}(T).$$

We say that Browder's theorem holds for $T \in B(H)$, if

$$\sigma(T) \setminus \sigma_w(T) = p_{00}(T).$$

We say that *a*-Browder's theorem holds for $T \in B(H)$, if

$$\sigma_{ea}(T) = \sigma_{ab}(T).$$

We say that generalized a-Weyl's theorem holds for $T \in B(H)$, if

$$\sigma_{SBF_{+}^{-}}(T) = \sigma_{ap}(T) \setminus E^{a}(T),$$

where E^a is the set of all eigenvalues of T that are isolated in $\sigma_{ap}(T)$.

It is clear that [8]

generalized *a*-Weyl's theorem \Rightarrow generalized Weyl's theorem

 \Rightarrow Weyl's theorem \Rightarrow Browder's theorem;

and

generalized *a*-Weyl's theorem \Rightarrow *a*-Weyl's theorem

 \Rightarrow Weyl's theorem \Rightarrow Browder's theorem;

and

generalized *a*-Weyl's theorem \Rightarrow *a*-Weyl's theorem

 \Rightarrow generalized Browder's theorem \Rightarrow Browder's theorem.

Mecheri [24] has proved generalized *a*-Weyl's theorem for some classes of operators. Here in this paper, we prove generalized *a*-Weyl's theorem for totally $p - (\alpha, \beta)$ -normal operators.

We say that $T \in B(H)$ has the single valued extension property (SVEP) if, for every open set $U \subseteq \mathbb{C}$, the only analytic function $f : U \to H$ that satisfies the equation $(T - \lambda)f(\lambda) = 0$ is the constant function $f \equiv 0$.

An operator T is said to be class \mathcal{Y}_{α} for $\alpha \ge 1$, if there exists a positive number k_{α} such that

$$|TT^* - T^*T|^{\alpha} \leq k_{\alpha}^2 (T - \lambda)^* (T - \lambda)$$
 for all $\lambda \in \mathbb{C}$.

It is known that $\mathcal{Y}_{\alpha} \subset \mathcal{Y}_{\beta}$ if $1 \leq \alpha \leq \beta$. Let $\mathcal{Y} = \bigcup_{1 \leq \alpha} \mathcal{Y}_{\alpha}$. We remark that a class \mathcal{Y}_{∞} operator *T* is *M*-hyponormal, i.e., there exists a positive number *M* such that

$$(T-\lambda)(T-\lambda)^* \leq M^2(T-\lambda)^*(T-\lambda)$$
 for all $\lambda \in \mathbb{C}$,

and *M*-hyponormal operators are class \mathcal{Y}_{\in} [31].

An operator T is said to have a finite ascent if ker $T^m = \ker T^{m+1}$ for some positive integer m, and finite descent if $\operatorname{ran} T^n = \operatorname{ran} T^{n+1}$ for some positive integer n.

Let X be a Banach space. An operator $T \in B(X)$ is called B-Fredholm by Berkani [6], if there exists $n \in \mathcal{N}$ for which the induced operator

$$T_n: T^n(X) \to T^n(X),$$

is Fredholm in the usual sense, and B-Weyl if in addition T_n has index zero.

Weyl [33] has proved Weyl's theorem for Hermitian operators. From then on, it has been extended to various classes of operators such as hyponormal, Toeplitz [10], and to several classes operators including hyponormal operators [26, 30]. Curto and Han [12] have proved the theorem for algebraically paranormal operators. Generalization of Weyl's theorem named as generalized Weyl's theorem is proved for hyponormal operators by Berkani [7]. Recently, it has been extended to various classes of operators such as algebraically hyponormal [18], algebraically class A [27], etc..

Here in this paper, we extend the same for more general class of operators, namely, totally $p - (\alpha, \beta)$ -normal operators. Also, we prove Weyl's theorem for algebraically totally $p - (\alpha, \beta)$ -normal operators.

Dragomir and Moslehian [13] has given various inequalities between the operator norm and numerical radius of (α, β) -normal operators. In this article, we extend the results to $p - (\alpha, \beta)$ -normal operators.

Generalized Weyl Theorem for Totally p - (α, β)-Normal Operators

We prove the following lemmas to prove the generalized *a*-Weyl's theorem for totally $p - (\alpha, \beta)$ -normal operators.

Lemma 2.1. Let $T \in B(H)$ be totally $p - (\alpha, \beta)$ -normal, then $T - \lambda$ has finite ascent for all then T has SVEP.

Proof. If *T* is totally $p - (\alpha, \beta)$ -normal, then $\ker(T - \lambda)^p = \ker(T - \lambda)^{*p}$, ascent $(T - \lambda) \le p \le 1$ for all $\lambda \in \mathbb{C}$, then *T* has SVEP. \Box

Theorem 2.2. Let $T \in B(H)$ be totally (α, β) -normal and $\lambda \in \sigma(T)$ be an isolated point of $\sigma(T)$, then $H_0(T) = E_{\lambda}H$, where E_{λ} denote the Riesz idempotent for λ .

Proof. Since *T* has SVEP, by [28] the theorem follows.

Theorem 2.3. Let $T \in B(H)$ be totally $p - (\alpha, \beta)$ -normal. Let $M \subseteq H$ be an invariant subspace of T, then the restriction $T|_M$ is also totally $p - (\alpha, \beta)$ -normal.

Proof. Let *P* be the orthogonal projection on \mathcal{M} . Then for all $z \in \mathbb{C}$ and for all $x \in \mathcal{M}$,

$$\|(T - zI)\|_{\mathcal{M}}^{*} \| = \|P(T - Z)^{*}\| = \|(T - zI)^{*} x\| = \mathcal{M}_{z} \|(A|_{\mathcal{M}} - zIx)\|.$$

Lemma 2.4. Let $T \in B(H)$ be totally $p - (\alpha, \beta)$ -normal. If $\sigma(T - \lambda I) = \{0\}$, then $T = \lambda$.

Proof. If *T* is totally $p - (\alpha, \beta)$ -normal, then $T \in \mathcal{Y}_{\in} \subseteq \mathcal{Y}$ by using the same argument used in [31, Lemma 10], and it is known that if $T \in \mathcal{Y}$ and if $\sigma(T) = \{0\}$, then A = 0 [31, Lemma 14]. Therefore, if *T* is totally $p - (\alpha, \beta)$ -normal, then $T - \lambda I$ is also totally $p - (\alpha, \beta)$ -normal and $\sigma(T - \lambda I) = \{0\}$. Hence $T - \lambda I = 0$.

Theorem 2.5. Let T be a totally $p - (\alpha, \beta)$ -normal operator and λ_0 be an isolated point of $\sigma(T)$. If E is the Riesz idempotent for λ_0 , then E is self adjoint and $E(H) = \ker(T - \lambda_0) = \ker(T^* - \overline{\lambda_0})$.

Proof. The second equality follows from the definition of totally (α, β) -normal operators. Any $p - (\alpha, \beta)$ -normal operator T can be represented as a block matrix $\begin{pmatrix} 0 & 0 \\ 0 & C \end{pmatrix}$, where $C : \overline{\operatorname{ran}(T)} \longrightarrow \overline{\operatorname{ran}(T)}$ has zero kernel.

$$E = \frac{1}{2\pi i} \int_{\partial D} (\lambda - T)^{-1} d\lambda$$
$$= \frac{1}{2\pi i} \int_{\partial D} \begin{pmatrix} \lambda^{-1} & 0\\ 0 & (\lambda - C)^{-1} \end{pmatrix} d\lambda$$
$$= \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}$$

on $E(H) \oplus E(H)^{\perp}$.

Hence E is self adjoint.

It is known that if $T \in B(H)$ has SVEP, then f(T) has SVEP for each *f* analytic in an open neighbourhood of $\sigma(T)$.

Lemma 2.6. Let $T \in B(H)$ be totally $p - (\alpha, \beta)$ -normal. Then generalized Weyl's theorem hold for T.

Proof. Assume that $\lambda \in \sigma(T) \setminus \sigma_{BW}(T)$. Then $T - \lambda I$ is *B*-Weyl and not invertible. We claim that $\lambda \in \partial \sigma(T)$. Assume to the contrary that λ is an interior point of $\sigma(T)$. Then, there exists a neighbourhood U of λ such that $\dim(T - \mu) > 0$ for all $\mu \in U$. It follows from [16, Theorem 10] that T does not have SVEP. On the other hand, since T is totally $p - (\alpha, \beta)$ -normal, it follows from Lemma 2.1 above that T has SVEP, which is a contradiction. Therefore $\lambda \in \partial \sigma(T)$. Conversely, assume that $\lambda \in E(T)$, then λ is isolated in $\sigma(T)$. From [20, Theorem 7.1], we have $X = M \oplus N$, where M and N are closed subspaces of X, $U = (T - \lambda I)|_{\mathcal{M}}$ is an invertible operator and $V = (T - \lambda I)|_{\mathcal{N}}$ is a quasinilpotent operator. Since T is totally $p - (\alpha, \beta)$ -normal, V is also totally $p - (\alpha, \beta)$ -normal, and from Lemma 2.4 is nilpotent. Therefore $T - \lambda I$ is Drazin invertible [29, Proposition 6] and [21, Corollary 2.2]. By [6, Lemma 4.1], $T - \lambda I$ is a *B*-Fredholm operator of index 0.

Theorem 2.7. Let $T \in B(H)$ be totally $p - (\alpha, \beta)$ -normal. Then f(T) obeys generalized Weyl's theorem for every function f analytic in the neighbourhood of $\sigma(T)$.

Proof. Since the operator T satisfies the generalized Weyl's theorem and it is isoloid, it follows from [7, Lemma 2.9] that f(T) obeys the generalized Weyl's theorem.

Theorem 2.8. Let $T \in B(H)$ be totally $p - (\alpha, \beta)$ -normal. Then f(T) satisfies Browder's theorem for each function f analytic in a neighbourhood of $\sigma(T)$.

Proof. It is known that operators with SVEP satisfy Browder's theorem [14]. Then f(T) satisfies Browder's theorem.

Theorem 2.9. Let T be totally $p - (\alpha, \beta)$ -normal. Then the generalized a-Weyl's theorem holds for T.

Proof. We have to prove that $\sigma_{ap}(T) \setminus \sigma_{SBF^+_{+}}(T) = E^a(T)$. For this, assume that $\lambda \in \sigma_{ap}(T) \setminus \sigma_{SBF^+_{+}}(T)$. Then $T - \lambda I$ is an upper semi-*B*-Fredholm operator and $\operatorname{ind}(T - \lambda I) \leq 0$. Hence, for *n* large enough, $T - (\lambda + \frac{1}{n})I$ is an upper semi-Fredholm operator and $\operatorname{ind}(T - (\lambda + \frac{1}{n}) I) = \operatorname{ind}T - \lambda I$ [8]. Therefore $\operatorname{ind}(T - (\lambda + \frac{1}{n})I) \leq 0$. Since *T* has SVEP, [1] implies that $\operatorname{ind}(T - (\lambda + \frac{1}{n})I) \geq 0$. Thus $\operatorname{ind}(T - (\lambda + \frac{1}{n})I) = 0$. It follows that $\operatorname{ind}(T - \lambda I) = 0$. This implies that $T - \lambda I$ is a *B*-Fredholm operator of index zero. Since *T* has SVEP, we have $\sigma(T) = \sigma_{ap}(T)$ and we have, $\lambda \in \sigma(T) \setminus \sigma_{BW}(T)$. Then it follows from Theorem 2.6 that $\lambda \in E(T)$. Hence $\lambda \in E^a(T)$. Conversely, let $\lambda \in E^a(T)$. Then λ is an isolated point of $\sigma_{ap}(T)$. Therefore $\overline{\lambda}$ is an isolated point of $\sigma(T^*)$. Let *P* be the spectral projection defined by

$$P = \int_{\partial B_0} (\lambda_0 I - T^*)^{-1} d\lambda_0,$$

where B_0 is an open disk centered at $\overline{\lambda}$ that contains no other points of $\sigma(T^*)$. Then T^* can be represented as the direct sum

$$T^* = T_1 \oplus T_2$$
, where $\sigma(T_1) = \overline{\lambda}$ and $\sigma(T_2) = \sigma(T^*) \setminus \{\overline{\lambda}\}$.

Then $\sigma(T^*) - T_2$ is invertible. We have to consider the two following cases:

Case 1. Assume that $\lambda = 0$. Then $\sigma(T_1) = \{0\}$. Since T_1 is a totally $p - (\alpha, \beta)$ -normal operator, it follows that $T_1 = 0$ by Lemma 2.1. Therefore $\overline{\lambda}I - T^* = 0 \oplus \overline{\lambda}I - T_2$.

Case 2. Assume $\lambda \neq 0$. Since T_1 is an invertible totally $p - (\alpha, \beta)$ -normal operator, it follows that T_1^{-1} is an invertible totally $p - (\alpha, \beta)$ -normal operator. Then $||T_1|| = |\lambda|$ and $||T_1^{-1}|| = \frac{1}{\lambda}$. Therefore, for any $x \in R(P)$, we have

$$||x|| \le ||T_1^{-1}|| ||T_1x|| = \frac{1}{|\lambda|} ||T_1x|| \le \frac{1}{|\lambda|} |\lambda| ||x|| = ||x||.$$

Hence, $\frac{1}{\lambda}T_1$ is unitary. Therefore T_1 is normal and $\overline{\lambda}I - T_1$ is also normal. Since $\overline{\lambda}I - T_1$ is quasinilpotent and the only normal quasinilpotent operator is zero, it follows that $\overline{\lambda} - T^* = 0 \oplus \overline{\lambda}I - T_2$. Now since $\overline{\lambda}I - T_2$ is invertible, it is known that $\overline{\lambda}I - T^*$ has finite ascent and descent. Therefore $\lambda I - T$ has finite ascent and descent. This implies that $\lambda \in \sigma_{ap}(T) \setminus \sigma_{SBF_1}(T)$.

Theorem 2.10. Let T be a totally $p - (\alpha, \beta)$ -normal operator. Then T is a-isoloid.

Proof. Since T is a totally $p - (\alpha, \beta)$ -normal operator, Theorem 2.9 implies that a-Weyl's theorem holds for T and $\sigma(T) = \sigma_{ap}(T)$. If we assume that $\lambda \in iso \sigma_{ap}(T) = iso \sigma(T)$, then $\overline{\lambda} \in iso \sigma(T^*)$. Since T^* is a totally $p - (\alpha, \beta)$ -normal operator and it is isoloid, $N(\overline{\lambda}I - T^*) \neq \{0\}$. Since $N(\overline{\lambda}I - T^*) \subseteq N(\lambda I - T)$, we have $N(\lambda I - T) \neq \{0\}$. Thus T is a-isoloid. **Theorem 2.11.** Let T be totally $p - (\alpha, \beta)$ -normal. Then f(T) obeys the generalized a-Weyl's theorem for every function f analytic in a neighbourhood of $\sigma(T)$.

Proof. Since T is a-isoloid, $T \in T_2(H)$ and T obeys the generalized a-Weyl's theorem, [35, Theorem 2.2] implies that f(T) obeys the generalized a-Weyl's theorem.

3. Weyl's Theorem for Algebraically Totally $p - (\alpha, \beta)$ -Normal Operators

Lemma 3.1. Let T be an algebraically totally $p - (\alpha, \beta)$ -normal operator. Then T has SVEP.

Proof. If *T* is algebraically totally $p - (\alpha, \beta)$ -normal operator, then p(T) is totally $p - (\alpha, \beta)$ -normal operator for some nonconstant polynomial *p*. Since p(T) has SVEP. It follows from [22] that *T* has SVEP.

Lemma 3.2. Let T be a quasinilpotent algebraically totally $p - (\alpha, \beta)$ -normal operator. Then T is nilpotent.

Proof. Assume that p(T) is totally $p - (\alpha, \beta)$ -normal for some nonconstant polynomial p. Since $\sigma(p(T)) = p(\sigma(T))$, the operator p(T) - p(0) is quasinilpotent. Thus Lemma 2.4 implies that

$$cT^m(T-\lambda_1)(T-\lambda_2)\dots(T-\lambda_n) \equiv p(T)-p(0)=0,$$

where $m \ge 1$. Since $T - \lambda_i$ is invertible for every $\lambda \ne 0$, we must have $T^m = 0$.

Theorem 3.3. Let T be an algebraically totally $p - (\alpha, \beta)$ -normal operator. Then T is an isoloid.

Proof. Let
$$\lambda \in \sigma(T)$$
. Using the Riesz idempotent E , we can represent T as a direct sum $T = \begin{pmatrix} T_1 & 0 \\ 0 & T_2 \end{pmatrix}$, where $\sigma(T_1) = \{0\}$ and

 $\sigma(T_2) = \sigma(T) \setminus \{\lambda\}$. Since T is algebraically totally $p - (\alpha, \beta)$ -normal operator, p(T) is totally $p - (\alpha, \beta)$ -normal operator for some nonconstant polynomial p. So $\sigma(p(T_1)) = \{p(\lambda)\}$. Therefore $p(T_1) - p(\lambda)$ is quasinilpotent. Since $p(T_1)$ is totally $p - (\alpha, \beta)$ -normal operator, from Lemma 2.4 that $p(T_1) - p(\lambda) = 0$. Put $q(z) = p(z) - p(\lambda)$. Then $q(T_1) = 0$, and hence T_1 is algebraically totally $p - (\alpha, \beta)$ -normal, it follows from Theorem 3.2 that $T_1 - \lambda$ is nilpotent. Therefore $\lambda \in \pi_0(T_1)$, and hence $\lambda \in \pi_0(T)$. So *T* is isoloid.

Theorem 3.4. Weyl's theorem holds for T when T^* is an algebraically totally $p - (\alpha, \beta)$ -normal operator.

Proof. Suppose that $\lambda \in \sigma(T) \setminus \sigma_w(T)$. Then $T - \lambda$ is Weyl and not invertible. We claim that $\lambda \in \partial \sigma(T)$. Let λ be an interior point of $\sigma(T)$. Then, there exists a neighbourhood U of λ such that dim ker $(T - \mu) > 0$ for all $\mu \in U$. It follows from [15] that T does not have SVEP. On the other hand, since p(T) is totally $p - (\alpha, \beta)$ -normal for some nonconstant polynomial p, it follows from Lemma 3.1 that T has SVEP, which is a contradiction. Therefore $\lambda \in \partial \sigma(T) \setminus \sigma_w(T)$, and it follows from the punctured neighbourhood theorem that $\lambda \in \pi_{00}(T)$. Conversely, suppose that $\pi_{00}(T)$, using the Riesz idempotent E, we can represent T as the

direct sum
$$T = \begin{pmatrix} T_1 & 0 \\ 0 & T_2 \end{pmatrix}$$
, where $\sigma(T_1) = \{0\}$ and $\sigma(T_2) = \sigma(T) \setminus \{\lambda\}$.

Droof

Lot

We consider two cases:

(i) When $\lambda = 0$. Then T_1 is algebraically totally $p - (\alpha, \beta)$ -normal and quasinilpotent. It follows from Lemma 3.2 that T_1 is nilpotent. Since $\ker(T_1)$ is infinite dimensional, then $0 \notin \pi_{00}(T)$, which is a contradiction. So dim $\operatorname{ran}(E) < \infty$. So it follows that T_1 is Weyl. But since T_2 is invertible, we can conclude that T is Weyl. Therefore $0 \in \sigma(T) \setminus \sigma_w(T)$.

(ii) When $\lambda \neq 0$. Then by the proof of Lemma 3.2, $T_1 - \lambda$ is nilpotent. Since $\lambda \in \pi_{00}(T)$, $T_1 - \lambda$ is an operator on the finite dimensional space ran(T). So $T_1 - \lambda$ is Weyl. Since $T_2 - \lambda$ is invertible, $T - \lambda$ is Weyl. \Box

Theorem 3.5. Let T be an algebraically totally $p - (\alpha, \beta)$ -normal operator. Then Weyl's theorem holds for f(T) for any function f analytic in the neighbourhood of the spectrum $\sigma(T)$ of T.

Proof. First, we show that $f(\sigma_w(T)) = \sigma_w(f(T))$ for all functions f analytic in the neighbourhood of $\sigma(T)$ of T. It is enough to prove $f(\sigma_w(T)) \subseteq \sigma_w(f(T))$, since the other inequality is always true. Let $\lambda \notin \sigma_w(f(T))$. Then $f(T) - \lambda$ is Weyl and $f(T) - \lambda = c(T - \alpha_1)(T - \alpha_2)...$ $(T - \alpha_n)g(T)$, where $c, \alpha_1, \alpha_2, ..., \alpha_n \in \mathbb{C}$ and g(T) is invertible. Since the operators on the right side commute, every $T - \alpha_i$ is Fredholm. Since T is algebraically totally $p - (\alpha, \beta)$ -normal, T has SVEP by Lemma 3.1. It follows from [1] that $i(T - \alpha_i) \leq 0$ for each $i = 1, 2, ..., n \leq$. Therefore $\lambda \notin f(\sigma_w(T))$, and hence $f(\sigma_w(T)) = \sigma_w(f(T))$. From [23], we know that if T is isoloid, then $f(\sigma(T) \setminus \pi_{00}(T)) = \sigma(f(T)) \setminus \pi_{00}(f(T))$, since T is isoloid by Lemma 3.3 and Weyl's theorem holds for T,

$$\begin{aligned} \sigma(f(T)) &\setminus \pi_{00}(f(T)) = f(\sigma(T) \setminus \pi_{00}(T)) \\ &= f(\sigma_w(T)) = \sigma_w(f(T)), \end{aligned}$$

which implies that Weyl's theorem holds for f(T).

Definition 3.6. For $T \in B(H)$, $\lambda \in \sigma(T)$ is said to be a *regular point* if there exists $S \in B(H)$ such that $T - \lambda = (T - \lambda)S(T - \lambda)$. If every isolated point of $\sigma(T)$ is a *regular point*, then T is called a *reguloid*.

Following lemma is used to prove the corollary below.

Lemma 3.7 ([18]). $T - \lambda$ has a closed range, if and only if $T - \lambda = (T - \lambda)S(T - \lambda)$.

Corollary 3.8. If T is a totally (α, β) -normal operator, then T is a reguloid.

Proof. Let λ_0 be an isolated point of $\sigma(T)$. Using Reisz idempotent E_{λ} ,

we can represent T as a direct sum $T = \begin{pmatrix} T_1 & 0 \\ 0 & T_2 \end{pmatrix}$, where $\sigma(T_1) = \{0\}$ and

 $\sigma(T_2) = \sigma(T) \setminus \{\lambda_0\}.$

Since T_1 is also (α, β) -normal operator, it follows from Lemma 2.4 that $T_1 = \lambda_0$. Therefore by Theorem 2.5, $H = E(H) \oplus E(H)^{\perp} = \ker(T - \lambda_0)$ $\oplus \ker(T - \lambda_0)^{\perp}$. Hence $T = \lambda_0 \oplus T_2$. Therefore $T - \lambda_0 = 0 \oplus (T_2 - \lambda_0)$ and hence

$$\operatorname{ran}(T-\lambda_0) = (T-\lambda_0)(H) = 0 \oplus (T_2-\lambda_0)(\operatorname{ker}(T-\lambda_0)^{\perp}).$$

Since $T_2 - \lambda_0$ is invertible, $T - \lambda_0$ has a closed range.

Theorem 3.9. Let $T \in B(H)$ be a totally (α, β) -normal operator. Then f(T) satisfies Browder's theorem for each analytic function f in a neighbourhood of $\sigma(T)$ and we have

$$f(\sigma(T) \setminus \Pi_0(T)) = f(\sigma_b(T)) = \sigma_b(f(T)) = \sigma(f(T)) \setminus \Pi_0(f(T)) = f(\sigma(T)) \setminus \Pi_0$$

(f(T)), and $f(\sigma_{Bw}(T)) = \sigma_{Bw}(f(T)).$

Proof. It is known that operators with SVEP satisfy Browder's theorem [14]. Then f(T) satisfies Browder's theorem. Since f(T) satisfies Browder's theorem,

$$f(\sigma(T) \setminus \Pi_0(T)) = f(\sigma_b(T))$$
$$= \sigma_b(f(T))$$
$$= \sigma(f(T)) \setminus \Pi_0(f(T))$$
$$= f(\sigma(T)) \setminus \Pi_0(f(T))$$
$$= f(\sigma(T)) \setminus \Pi_0(f(T)),$$

and $f(\sigma_{Bw}(T)) = \sigma_{Bw}(f(T))$.

This completes the proof.

References

- P. Aiena and O. Monsalve, Operators which do not have the single values extension property, J. Math. Anal. Appl. 250 (2000), 435-448.
- [2] A. Aluthge, On p-hyponormal operators for 0 Theory 13(3) (1990), 307-315.
- [3] A. Aluthge, Some generalized theorems on *p*-hyponormal operators, Integral Equations Operator Theory 24(4) (1996), 497-501.
- [4] T. Ando, On some operator inequalities, Math. Ann. 279(1) (1987), 157-159.
- [5] S. C. Arora and P. Arora, On *p*-quasihyponormal operators for 0 , Yokohama Math J. 41 (1993), 25-29.
- [6] M. Berkani, Index of *B*-Fredholm operators and poles of the resolvant, J. Math. Anal. Appl. 272 (2002), 596-603.
- [7] M. Berkani and A. Arround, Generalized Weyl's theorem and hyponormal operators, J. Aust. Math. Soc. 76 (2004), 291-302.
- [8] M. Berkani and J. Koliha, Weyl type theorems for bounded linear operators, Acta Scientiarum Mathematicarum (Szeged) 69 (2003), 359-376.
- [9] S. L. Campbell and B. C. Gupta, On k-quasihyponormal operators, Math. Joponica. 23 (1978), 185-189.

D. SENTHILKUMAR and R. SANTHI

- [10] L. A. Coburn, Weyl's theorem for nonnormal operators, Michigan Math. J. 13 (1966), 285-288.
- [11] H. Crawford Rhaly, Posinormal operators, J. Math. Soc. Japan 46 (1994), 587-605.
- [12] R. E. Curto and Y. M. Han, Weyl's theorem for algebraically paranormal operators, Integral Equations Operator Theory 47 (2003), 307-314.
- [13] S. S. Dragomir and M. S. Moslehian, Some inequalities for (α, β)-normal operators in Hilbert spaces, Ser. Math. Infom. 23 (2008), 39-47.
- [14] B. P. Duggal and S. V. Djorjovic, Dunford's property (c) and Weyl's theorem, Integral Equations Operator Theory 43(3) (2002), 290-297.
- [15] L. Fialkow, A note on the operator $X \rightarrow AX XB$, Trans. Amer. Math. Soc. (1978), 147-168.
- [16] J. K. Finch, The single valued extension property on a Banach space, Pacific J. Math. 58 (1975), 61-69.
- [17] T. Fututa, M. Ito and T. Yamazaki, A subclass of paranormal including class of loghyponormal and several related classes, Scientiae Mathematicae 1 (1998), 389-403.
- [18] R. Harte, Fredholm, Weyl and Browder theory, Proceedings of the Royal Irish Academy 85A (1985), 151-176.
- [19] R. Harte, Invertibility and Singularity for Bounded Linear Operators, Dekker, New York, 1988.
- [20] J. J. Koliha, A generalized Drazin inverse, Glasgow Math. J. 38 (1996), 367-381.
- [21] K. B. Laursen, Operators with finite ascent, Pacific J. Math. 152(2) (1992), 323-336.
- [22] K. B. Laursen and M. Newmann, An Introduction to Local Spectral Theory, London Mathematical Society, Monographs, New Series 20, Calendon Press, Oxford, 2000.
- [23] W. Y. Lee and S. H. Lee, A spectral mapping theorem for the Weyl spectrum, Glasgow Math. J. 38 (1996), 61-64.
- [24] S. Mecheri, Generalized a-Weyl's theorem for some classes of operators, Nihonkai Math. J. 17 (2006), 155-165.
- [25] M. S. Moslehian, On (α, β) -normal operators in Hilbert spaces, Image 39 (2007), 39-47.
- [26] Muneo Cho, Masuo Ito and Satoru Oshiro, Weyl's theorem holds for p-hyponormal operators, Glasgow Math. J. 39 (1997), 217-220.
- [27] M. H. Rashid, M. S. M. Noorani and A. S. Saari, Weyl's type theorems for algebraically class A operators, General Mathematics 16(3) (2008), 99-117.
- [28] F. Riesz and B. Sz. Nagy, Functional Analysis, Frederick Ungar, New York, 1955.
- [29] S. Roch and B. Silbermann, Continuity of generalized inverses in Banach algebras, Studia Math. 136 (1999), 197-227.

34

- [30] J. Stella, Irene Mary and S. Panayappan, Weyl's theorem for class A(k) operators, Glasgow Math. J. 50 (2008), 39-46.
- [31] A. Uchiyama and T. Yoshino, On the class $\mathcal Y$ operators, Nihonkai Math. J. 8 (1997), 179-194.
- [32] B. I. Wadhwa, *M*-hyponormal operators, Duke Math. J. 41(3) (1974), 655-660.
- [33] H. Weyl, Uber beschrankte quadratishe formen, deren differenz vollsteig ist, Rendiconti del Circolo Matematico di Palermo 27 (1909), 373-392.
- [34] D. Xia, Spectral Theory of Hyponormal Operators, Birkhauser Verlag, Boston, 1983.
- [35] C. Xiaohong, G. Moazhang and M. Bin, Weyl type theorem for p-hyponormal and M-hyponormal operators, Studia Math. 163 (2004), 177-188.